Equation Joke

I can solve one-step and two-step missing number equations using inverse operations.
000
Find the value of the letters in the equations. Then, fill in the letters in the grid below to reveal a maths joke.

			-						$!$
5	8	27		50	11	12	9	30	

$2 w+5=21$	$w=$	$128 \div 4=\mathrm{i}$	i =
$s \div 4=23$	$s=$	$3 c-18=102$	c =
$30-7=8$	0	$6 a \div 2=90$	a
$3 t=99$		$10 \mathrm{l}+20=290$	l =
$4 b+20=68$	$\mathrm{b}=$	$7 r=63$	r =
$2 \mathrm{~g}-10=90$		$7 e-8=69$	$e=$
$5 d+9=84$	$d=$	$9 h=225$	$\mathrm{h}=$

Equation Joke Answers

Find the value of the letters in the equations. Then, fill in the letters in the grid below to reveal a maths joke.

ω	h	a	t	d	0	b	i	r	d	s	d	0	a	t	s	c	h	0	0	1	?
8	25	30	33	15	5	12	32	9	15	92	15	5	30	33	92	40	25	5	5	27	

0	ω	1	-	9	e	b	r	a	$!$
5	8	27		50	11	12	9	30	

$2 w+5=21$	$w=8$	$128 \div 4=i$	$i=32$
$s \div 4=23$	$s=92$	$3 c-18=102$	$c=40$
$30-7=8$	$\mathrm{o}=5$	$6 a \div 2=90$	$\mathrm{a}=30$
$3 \mathrm{t}=99$	$\mathrm{t}=33$	$10 \mathrm{l}+20=290$	$\mathrm{l}=27$
$4 \mathrm{~b}+20=68$	$\mathrm{~g}=12$	$7 \mathrm{r}=50$	$\mathrm{r}=9$
$2 \mathrm{~g}-10=90$	$\mathrm{~d}=15$	$9 \mathrm{~h}=225$	$\mathrm{e}=11$
$5 \mathrm{~d}+9=84$			

