1) a) Tick the representation which matches the equation $2 x+3=9$.

b) Write down an equation to match each of the other representations.
2) Compare the value of x and y in these equations using <, > and =. Draw representations to show your working.
$3 x+4=16$

$$
2 y+4=16
$$

$4 x-5=15$
$3 y-5=10$
$2(x+4)=28$
$3(y+4)=27$

3) Create three equations where $x=3$, using the numbers and expressions below.
Draw representations of your equations.

1) a) Tick the representation which matches the equation $2 x+3=9$.

b) Write down an equation to match each of the other representations.
2) Compare the value of x and y in these equations using <, > and =. Draw representations to show your working.
$3 x+4=16$
$2 y+4=16$

$4 x-5=15$
$3 y-5=10$

$2(x+4)=28$
$3(y+4)=27$

3) Create three equations where $x=3$, using the numbers and expressions below.
Draw representations of your equations.

4) Is the value of the letter x the same in both equations? Prove your answer using diagrams and explain your reasoning.

$3(x+4)=30$
$3 x+4=22$
5) a) Do you agree with Nishi? Explain your reasoning using diagrams.

If $x=4$, then I can balance this equation using the expression $10+4+3$.

b) Write three different expressions that will balance this equation.
3) a) Do the operations correctly show how to use inverse operations to find the value of x ? Explain your reasoning.

b) Complete the inverse operations to find the value of x.

1) Is the value of the letter x the same in both equations? Prove your answer using diagrams and explain your reasoning.
$3(x+4)=30$
$3 x+4=22$
2) a) Do you agree with Nishi? Explain your reasoning using diagrams.

If $x=4$, then I can balance this equation using the expression $10+4+3$.

b) Write three different expressions that will balance this equation.
3) a) Do the operations correctly show how to use inverse operations to find the value of x ? Explain your reasoning.

b) Complete the inverse operations to find the value of x.

1) There are six different possible values for x in this equation. Can you find them all and write the six different equations? Show your working out. One has been done for you:

$15 x+4=34$ where $x=2$
2) What could the missing digits in this equation be? Find more than one possible answer. For example: If $x=17$, then $3 x+13=64$

The value of x in my equation is a two-digit prime number less than 30. The answer to the equation is a square number.
3) The total length of all four pencils is 139 cm . Pencils A and B are the same length. Find the length of pencil C.

A

B

C

D

1) There are six different possible values for x in this equation. Can you find them all and write the six different equations? Show your working out. One has been done for you:
$\square x+4=34$
$15 x+4=34$ where $x=2$
2) What could the missing digits in this equation be? Find more than one possible answer. For example: If $x=17$, then $3 x+13=64$

The value of x in my equation is a two-digit prime number less than 30. The answer to the equation is a square number.
3) The total length of all four pencils is 139 cm . Pencils A and B are the same length. Find the length of pencil C.

A

B

C

D

